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 Abstract 

In this work, the paring correlation along the energy surfaces for some light nuclei has been 

investigated. To this end, constrained Hartree-Fock+BCS method with Skyrme interaction is 

employed. Variation of average paring gaps along with the Nilsson single- particle levels at each 

constrained nuclear shapes shows the relation between nuclear shapes, paring correlation and 

nature of single particle levels. The calculated results indicate that the effect of paring depends on 

the level density in the vicinity of highest occupied level. 
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Introduction 

Pairing correlations, which play not only a crucial role in superconducting solids but also 

contribute an important complement of nuclear shell structure (Bardeen, J., L. N. Cooper, and J. 

R. Schrieffer, 1957). The key feature of pairing correlations is the occurrence of an energy gap in 

the excitation spectrum.This gap manifests itself in two different kinds of energetic observables: 

first, there is a gap in the excitation spectra of even-even nuclei, which does not appear in the 

spectra of odd-mass number or odd-odd nuclei, and second, there occurs a shift between the 

interpolation curves of the ground-state binding energies of even-even as compared to odd-mass 

nuclei, which is called the odd-even mass staggering (Bender, M. et al, 2000). For light and 

medium-mass nuclei, the staggering has two components. The first one originates from pairing 

while the second, comparable in magnitude, has its roots in the deformed mean-field (Satula, W., 

J. Dobaczewski and W. Nazarewicz, 1998). Most often, pairing correlations are described within 

the Hartree-Fock framework by generalizing the mean-field concept to include a pairing field 

with the use of the BCS (Bardeen, Cooper, and Schrieffer) approximation by employing a self-

consistent approach. We employ Skyrme interaction which can simplify the calculations with its 

zero-range form to successfully describe the masses, charge radii and excited states of finite 

nuclei. In this work, we will investigate the effects of pairing correlation in some selected even-

even nuclei (
28

Si, 
22

Ne, 
36

Mg) with the calculated potential energy surfaces by employing the Ev8 

code (Ryssens, W. et al, 2014). 

 

Theoretical Framework 

 The full many-body Hamiltonian can be written as follows 

 
N N

i i j

i=1 i j

1 ˆˆH = t + V(r , r )
2

 (1) 

where the first term is the one-body kinetic energy, and the second term represents the two-body 

force with the Coulomb interaction. The simplified expression for the Hatree-Fock equation is 

obtained as  
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 This equation is known as the Hartree-Fock equation which looks like the regular one-

body Schrödinger equation, with the extra non-local term. The Skyrme interaction is one of the 

most widely used energy functional for nuclear structure calculations. In the Skyrme-Hartree-

Fock approach, the total binding energy of the system is given by the sum of the kinetic and 

Coulomb energies as well as the Skyrme energy functional that models the effective interaction 

between nucleons is shown in the following equation (Bender, M., and P. H. Heenen, 2003), 

 Coulomb kin SkE E E E . (3) 

The Skyrme energy ( Sk
E ), is derived by evaluating, 
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The Hartree-Fock equations with Skyrme interaction is given by 
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 The formulation of BCS theory and gap equation will be solved in pairing problems with 

the use of Hamiltonian that contains a single-particle part and residual interaction acting on the 

states k and –k. It has the form 

 

0 † † †

- - ' '

' 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ,- ',- 'k k k k k k k

k kk

H a a k k v k k a a a a

  

(6) 

where  is the creation operator of each pair. For the simple case, the matrix element 

 is assumed to be independent of the state k and is given by a constant number, 

G. The Hamiltonian then becomes  

   (7) 

The approximate BCS ground state wave function of the Hamiltonian is  
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We have to use the variational principle with a constraint to the particle number.  

 ˆ ˆH H N  .   (9)

 

 

The Lagrange multiplier  is determined by the condition that the expectation value of the 

particle number operator with respect to the BCS state must be the particle number N of the 

system, 

 

2

0

ˆ 2 ,k

k

BCS N BCS v N    (10) 

and the expectation value of the constrained Hamiltonian leads to 
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BCS H N BCS v G u v G v . (11) 

 The occupation probability of each paired state can be calculated by solving the gap 

equation iteratively. 

 This obtained 
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(12) 

where,  and  are occupation and inoccupation probabilities of the single particle levels k or 

–k. The gap equation becomes  

 
2

0 20

.
2

k
k

k
k k

G
  (13) 

The energy of the system in equation (7) becomes 

 

2
2 0

0

2 k k

k

E v
G

   (14)  

where,  is called the pairing energy. 

 These occupation probabilities  are used in replacing all the sums over the occupied 

orbital by a sum over all orbital multiplied with the corresponding occupation probabilities: 

 .  (15) 

 If the sum over k is unrestricted, the sums in equation (13) diverge. One has to introduce 

cut-off energy in these sums. Therefore, in the calculations including pairing interaction; an 

additional parameter such as the pairing cut-off or the size of the pairing window is needed. 
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Results and Discussion 

 The occurrence of gaps or regions of the low single particle level density around the Fermi 

surface is correlated with the deformed ground state energies. Thus, it is necessary to calculate 

the potential energy surfaces to predict the shape of the nucleus whether it has stable or deformed 

nature. In this framework, the constrained quadrupole moment is added to the Hamiltonian to 

generate energy surfaces. We calculate the potential energy surfaces as a function of quadrupole 

deformation parameter using constrained Hartree-Fock method as follows  

 
ˆ ,H H Q          (16) 

The deformation parameter m  is related to the total mass of the moment which can be seen as 

follows 

 
mm Q

AR


ˆ
3

4

0

 (17) 

The connections between iq  and the Cartesian quadrupole moments are given by the following 

equations 

 
1 2

1ˆ
2

xQ q q
  

(18) 

  
1 2

1ˆ 2
2

yQ q q
        

(19)
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2

zQ q q .  (20) 

An alternate representation is given in terms of the deformation parameter  

( q ) and the triaxiality angle ( ). Their relationship can be represented by 

 
1

1
cos sin

3
q q q   (21) 

 
2

2
sin .

3
q q   (22) 

In this work, Ev8 code is used to solve the mean-field equations for the Skyrme energy 

density functional. The single particle wave functions are discretized on a 3-dimensional (3D) 

Cartesian mesh to solve the mean-field equations (Ryssens, W. et al, 2014). There are many sets 

of the Skyrme parameters which have been generated to reproduce the nuclear matter properties. 

In this work, the Sly4 and SGII parameter sets are chosen because they are powerful to 

investigate neutron-rich nuclei. The Sly4 parameter set provides more consistent binding energies 

with experimental data than the SGII parameter set as shown in Table 1.1. These experimental 

data are reported by the National Nuclear Data Center (https://www.nndc.bnl.gov/nudat2/). For 

this reason, Sly4 parameter set will be used in this work. 
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Table 1.1 Comparison of ground state minimum energies for each    parameter set and 

experimental data. 

Nucleus
 

SGII Sly4 
Experimental 

data 
28

Si 243.49 MeV 234.56 MeV 236.54 MeV 
22

Ne 187.91 MeV 177.45 MeV 177.77 MeV 
36

Mg 283.63 MeV 263.08 MeV 260.78 MeV 
 

 The calculated potential energy surfaces (PES) are depicted in Fig. 1(a) for (i)
28

Si, 

(ii)
22

Ne and (iii)
36

Mg. In general, the nuclei having minimum energy located at the positive 

deformation parameter describes the prolate shape whereas the minimum energy with negative 

deformation parameter stands for the oblate shape. The energy surface for 
28

Si shows a deep 

oblate minimum, while that for 
22

Ne and 
36

Mg show prolate minimum.  As can be seen in Fig 1, 
28

Si nucleus has energy minimum of oblate configuration which has the ground state energy of        

-234.56 MeV at β2 = -0.32. Next to 
28

Si, the PES of 
22

Ne nucleus shows the prolate configuration 

with ground state energy (-177.45 MeV) and its quadrupole deformation is 0.42. The potential 

energy surface of 
36

Mg nucleus shows the prolate configuration (β2 = 0.39) with the ground state 

minimum of nearly -263 MeV. 

It is well known that pairing plays a decisive role in the open shell nuclei. The energy 

gap is a measure of the width of the transition between highly occupied states and unoccupied 

ones. The appropriate pairing strength (G) is considered to reproduce ground state binding 

energies. The paring strength G = 410 MeVfm
3
 is used for both protons and neutrons in this 

calculation. A smooth pairing energy cut-off of 5 MeV around the Fermi level is also used to 

overcome the divergence case. The zero-range density-dependent pairing force is employed for 

the pairing interaction as follows 

 
1 2 1 2

0

ˆ r1 P
V(r , r ) g 1 r r

2
  (23) 

where P̂ is the spin-exchange operator, 0 0.16  fm
-3 

and
  1 2r r
r

2
. 

 The corresponding average neutron pairing gaps as a function of quadruple deformation for 
28

Si, 
22

Ne and 
36

Mg are depicted in Fig. 1 (b). In 
28

Si and
 22

Ne, there is no pairing gap at the 

absolute minimum; it can be assumed that there is no pairing effect at these regions. It is 

predicted that the energy spacing between next unoccupied level and last occupied one is larger 

than the energy available from pairing of nucleons in the last occupied levels. For 
36

Mg nucleus, 

the effect of pairing correlation becomes weaker as the paring gap decreases near the deformed 

ground state. 

The formation of deformed minima can be related to the occurrence of gaps or regions of 

low single particle level density around the highest occupied level. To illustrate the effect of 

pairing correlation and the level density, the neutron single-particle energy levels versus 

quadruple deformation for the selected nuclei are depicted in Fig. 1 (c). For deformed nuclei such 

as 
28

Si, 
22

Ne and 
36

Mg; the deformation removes the degeneracy of energy levels at spherical 

shape and energy levels split-up according to their angular momentum. Solid curves correspond 
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to levels with positive parity whereas short-dashed curves denote levels with negative parity. The 

red circles indicated the magic number. From these figures, it can be seen that the lower level 

density leads to smaller pairing gaps (or pairing correlation) near local minima, on the other 

hand, denser level density to larger pairing effects. 

 

Figure 1 (a) Potential energy surfaces (b) Average neutron pairing gaps
n

 and (c) Neutron 

single-particle energy levels versus quadruple deformation
2

 for (i) 
28

Si, (ii) 
22

Ne 

and (iii) 
36

Mg obtained with Sly4 parameter set.   

Summary and Conclusion 

In this work, we have compared the potential energy surfaces as a function of 

deformation parameters for some selected nuclei, namely, 
28

Si,
 22

Ne and 
36

Mg using the two 

Skyrme parameter sets (Sly4, SGII). From these results, the energy surface for 
28

Si shows a deep 

oblate minimum meanwhile 
22

Ne and 
36

Mg show prolate minimum. Then we calculate the 

corresponding average neutron pairing gaps and neutron single particle levels as a function of 

quadrupole deformation with the choice of the Sly4 parameter set to provide the fact that pairing 

plays an important role in determining the shapes of nuclei. It is found that the lower level 

density leads to smaller pairing gaps (or pairing correlation) near local minima, on the other 

hand, denser level density to larger pairing effects. At spherical shapes, pairing correlation 
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becomes strongest due to dense level density. It can be concluded that the effect of paring 

depends on the level density in the vicinity of the Fermi surface. 
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